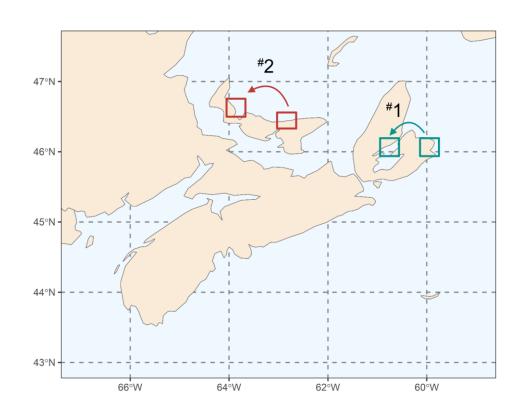


Distribution of MSX & Dermo

Regulated Areas

Declared Infected Areas for Multinucleate sphere X unknown (MSX)


Perkinsus marinus (Dermo) Regulated Areas

Multinucleate sphere X unknown (MSX) and Perkinsus marinus (Dermo) Regulated Areas

Cape Breton is a useful study location to help us learn more about MSX!

Project Overview

*1: Transplant of oysters from MacDonald's Pond, NS to Nyanza Bay, NS.

*2: Transplant of oysters from Savage Harbour, PE to Bideford River, PE.

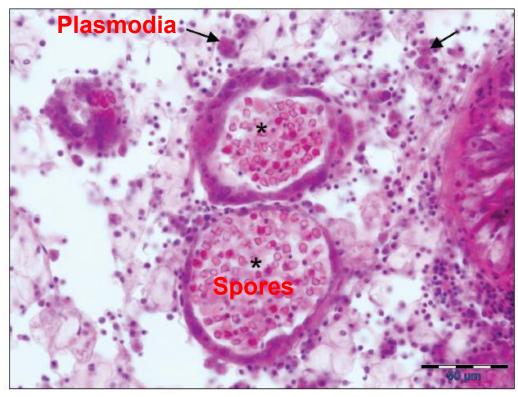
Measure/Determine:

Oyster Survival & Growth

MSX Prevalence

Environmental Parameters (temperature, oxygen, turbidity, fluorescence, salinity)

Genotype Associated with MSX Resistance



Compare Surface vs. Bottom Culture

General Procedures at Each Site

- ➤ Initially, collect tissue samples for PCR and histology from oysters at each site to screen for Haplosporidium nelsoni (MSX)
 - ➤ Plus, potentially *Perkinsus marinus* (Dermo) and *H. costale* (SSO).
 - ➤ Tissues will also be collected from mortalities when possible.
- ➤ Anesthetize and non-lethally sample gill tissue from oysters that will be deployed.
 - Used to later genotype oysters.

(Collins et al., 2018)

General Procedures at Each Site

- ➤ Measure the length of each oyster before it is placed in an individual compartment within a custom oyster bag.
 - ➤ Length of all mortalities and survivors at the end of the trial will be used to calculate individual growth.
 - Oyster bags will be deployed within floating or submerged cages.
- ➤ Continually collect data on water temperature, oxygen saturation, turbidity, fluorescence and salinity.
- Monitor mortality regularly until September.

Cape Breton Transplant

MacDonald's Pond

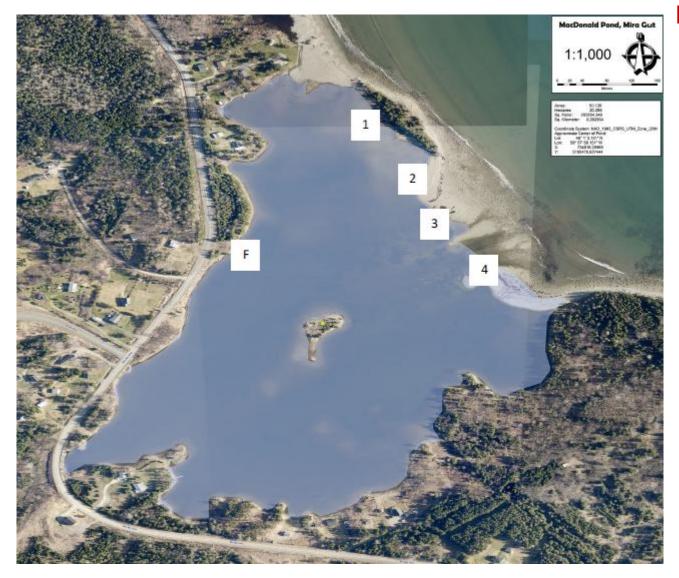


Figure 2.1 (Beresford, 2019)

High MSX Prevalence, But Low Oyster Mortality

H. nelsoni Prevalence - 2010

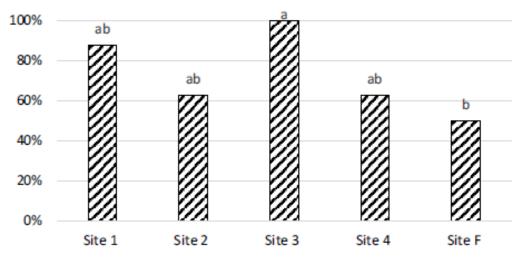


Figure 2.2 (Beresford, 2019)

H. nelsoni Prevalence Following Transfer to Nyanza Bay - 2016

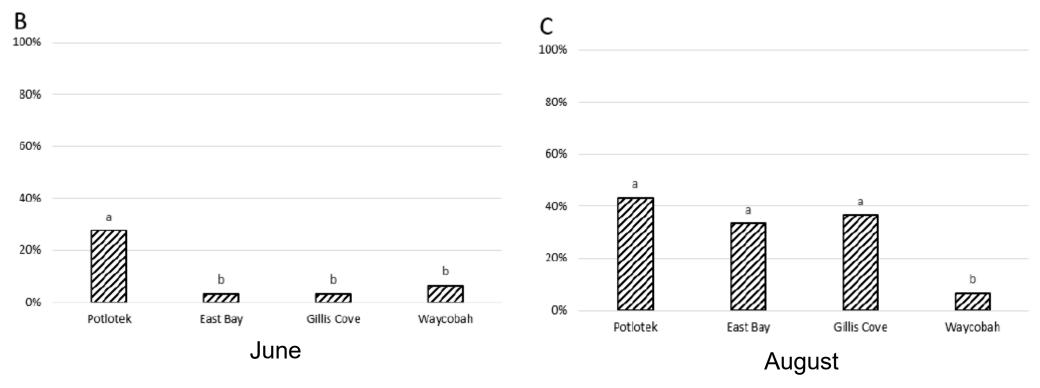


Figure 5.2 (Beresford, 2019)

Oyster Mortality Following Transfer to Nyanza Bay - 2016

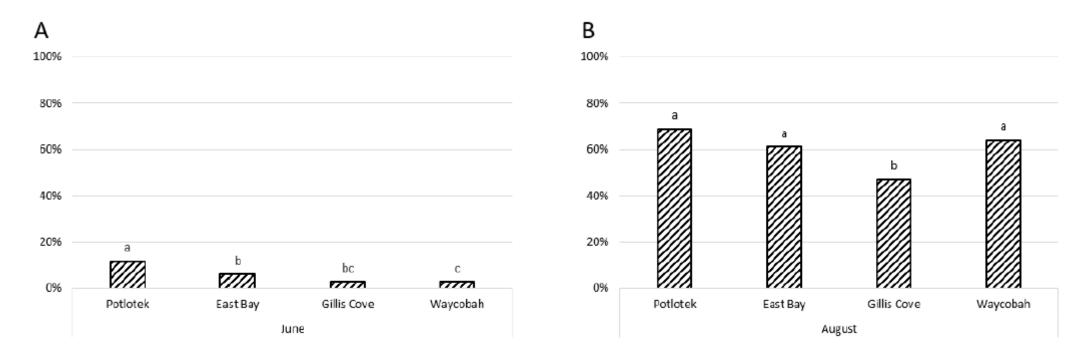


Figure 5.4 (Beresford, 2019)

MacDonald's Pond Deployment

- Sampled 30 oysters for diagnostics.
 - ➤ 43.3% (13 oysters) tested positive for MSX via PCR.
 - Awaiting histology results.
- ➤ Non-lethally sampled 120 oysters and deployed them.
 - ➤ 60 oysters on the surface.
 - > 60 oysters on the bottom.
- ➤ Loggers attached to surface and bottom cages collecting environmental data every 15 min.

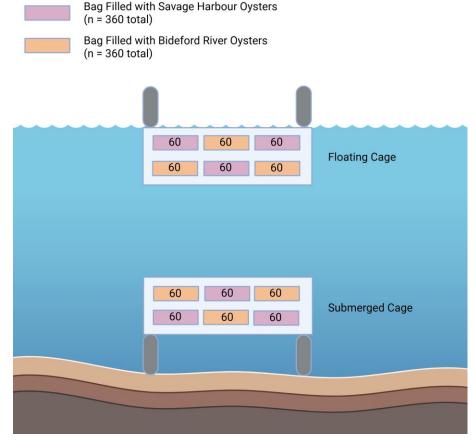
May 21, 2025

Nyanza Bay Deployment

May 22, 2025

- > Zero live oysters were found.
 - Unable to transfer any to MacDonald's Pond.
- ➤ Non-lethally sampled 180 oysters and deployed those with another 180 oysters sourced from MacDonald's Pond.
 - Split equally between the surface and bottom cages.
- Same environmental data loggers attached to each cage.

Questions to Address in Cape Breton


- Do oysters from MacDonald's Pond have genetic resistance to MSX?
 - ➤ Genotyping oysters using a 60K single nucleotide polymorphism (SNP) array.
- > Are there unique environmental conditions in MacDonald's Pond that limit pathogen virulence?
 - ➤ Environmental probes will continuously collect data on water temperature, oxygen, turbidity, fluorescence and salinity.
- Does culture depth impact survival?
 - Oyster cages will be deployed at the water surface and bottom in both Nyanza Bay and MacDonald's Pond.

Bideford River Deployment

- ➤ Testing naïve (Savage Harbour) vs. preexposed (Bideford River) oysters.
- ➤ Planning to non-lethally sample and divide 360 oysters from each source among a floating and submerged cage.
- Will collect data on water temperature and salinity.
- Scheduled to deploy oysters starting on June 12.

Questions to Address in PEI

- ➤ Do any oysters across PEI have genetic resistance to MSX? Does it make a difference if the oysters are naïve or previously exposed to MSX?
 - ➤ Genotyping oysters using a 60K single nucleotide polymorphism (SNP) array.
- > Are there unique environmental conditions across PEI that limit pathogen virulence?
 - > Environmental probes will continuously collect data on water temperature and salinity.
- Does culture depth impact survival?
 - > Oyster cages will be deployed at the water surface and bottom in Bideford River.

Expected Project Outcomes

- ➤ Conduct genome-wide association study/studies (GWAS) to help identify if there are potential genetic markers of MSX disease resistance in Cape Breton and/or PEI.
 - Useful for the development of local breeding programs.
- Analyze environmental data to assess correlations between water parameters and H. nelsoni / MSX disease prevalence.
 - Helpful for farm site selection.
- Compare growth performance and survival of oysters reared at different depths.
 - Inform farm management practices.

Acknowledgements

Dr. Ramón Filgueira
Elise Poirier
Dr. Tiago Hori
Dr. Meredith White
Jess Fry
Dr. Rod Beresford
Sindy Dove
Olivia Burke
Mitchell Hiscock
Robin Stuart

Roger Palmer

Fisheries and Oceans Canada Pêches et Océans Canada

Questions?

Dr. Eric Ignatz

Postdoctoral Researcher, Dalhousie University

Eric.lgnatz@dal.ca

