The *Haplosporidium nelsoni* genome: an important tool to advance understanding and management of MSX disease in the eastern oyster

Amanda Xuereb^{1*}, Martin Mallet², Eric Normandeau¹, Brian Boyle¹, Claudio Slamovits³, Rod Beresford⁴, Tiago Hori⁵, Jean-Sébastien Moore¹ ¹Université Laval, ²L'Étang Ruisseau Bar Ltée, ³Dalhousie University, ⁴Cape Breton University, ⁵Atlantic Aqua Farms Ltd.

Fisheries and Oceans Pêches et Océans

Aquaculture Canada 2025 Fredericton NB, June 8-11

DFO: MSX Science Research Funding

- completing an annotated chromosome-level assembly of the genome for *H. nelsoni*
- comparing the assembled genome with other *H. nelsoni* sequences to assess the parasite variability, and obtain insights into the origin of the 2024 Prince Edward Island (PEI) outbreak
- analyzing historical samples of Eastern oysters from PEI to search for previously undetected presence of MSX prior to outbreak

Jean-Sébastien Moore U Laval

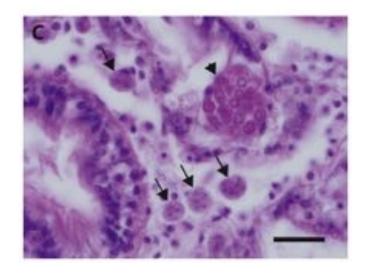
Brian Boyle U Laval

Martin Mallet Mallet Oysters

Claudio Slamovits Dalhousie U

Eric Normandeau U Laval

Amanda Xuereb U Laval



Rod Beresford Cape Breton U

Tiago Hori Atlantic Aquafarms Inc.

Multinucleate Sphere Unknown X (MSX) Haplosporidium nelsoni

Haplosporidia protists: internal parasites of marine invertebrates, mainly molluscs

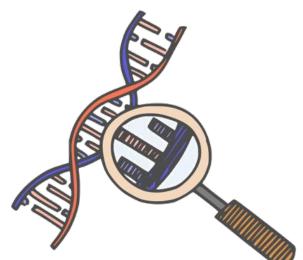
Major pathogens of concern: responsible for devastating marine disease epizootics

MSX disease: Haplosporidium nelsoni Infects eastern oyster (Crassostrea virginica)

Complete life cycle not known; intermediate host suspected

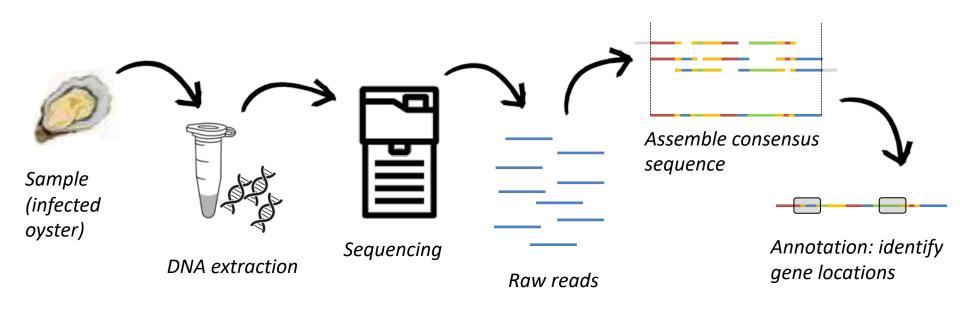
Slows growth, high mortality rates (> 90% mortality observed following outbreaks)

Devastating impacts on wild and farmed oyster populations


Why is a reference genome useful?

In general ...

- a blueprint to align other DNA sequences to identify locations of genetic variation among individuals (e.g., SNP markers)
- identify specific gene functions


The availability of a reference genome can improve our knowledge of basic aspects of *H. nelsoni* biology, much of which is unknown

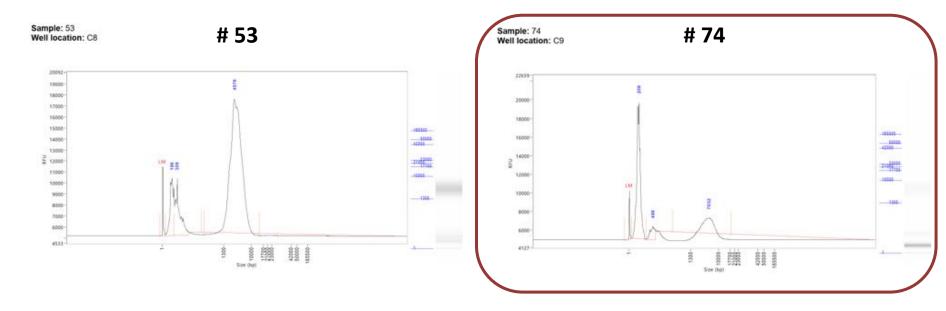
- Strain variation and identification
- Population structure
- Identification of genes involved in infection
- Parasite adaptation, predictive models
- Identification of additional markers for accurate and rapid diagnostics (e.g., eDNA)

Genome Assembly

Reconstruction of the entire genome sequence from DNA sequence fragments *De novo* assembly: no prior knowledge of length of genome or composition

H. nelsoni detection and DNA quantification: qPCR

Cross section of mantle, gill, and stomach of oysters qPCR with *H. nelsoni* target gene primers (SSU) 10 samples with high *H. nelsoni* infection kept for further screening

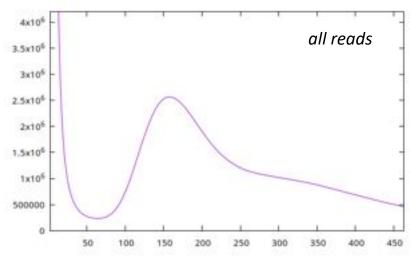

H. nelsoni detection and DNA quantification: qPCR

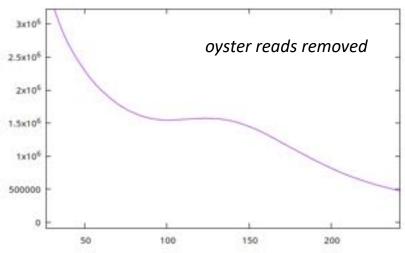
Sample ID	Ef1a Cq	TubulinB Cq	Haplo Cq	Delta Cq Haplo-Ef1a	Delta Cq Haplo-TubulinB
2	16.003	16.382	11.5	-4.503	-4.882
3	14.167	14.667	12.2	-1.967	-2.467
7	13.853	14.144	12.6	-1.253	-1.544
10	15.263	15.797	11.3	-3.963	-4.497
12	13.991	14.418	11.2	-2.791	-3.218
14	16.061	16.453	12.2	-3.861	-4.253
17	14.136	14.772	11.7	-2.436	-3.072
53	15.462	15.624	10.8	-4.662	-4.824
74	16.665	17.093	10.7	-5.955	-6.933
86	14.877	15.413	12.3	-2.577	-3.113

H. nelsoni DNA quality: Femto Pulse gDNA

DNA fragment size distribution

- average size ~5000-7000 bp
- Ok for short read sequencing, not for long read sequencing


H. nelsoni DNA sequencing

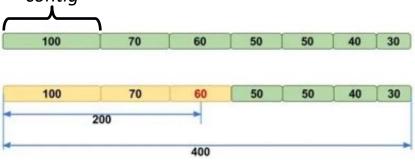

AVITI short-read sequencing

H. nelsoni DNA sequencing

AVITI short-read sequencing

982.8M reads

Remove contamination


- Reads mapped to C. virginica reference genome
- Removed ~50% of the sequences
- Bump ~125X (potentially H. nelsoni)

H. nelsoni preliminary assembly

 Kraken2 annotation: 2M trimmed and filtered reads mapped to Haplosporidia/Haplosporidium

Draft assembly with MaSuRCA short read assembler:

- Total length of assembly: 756 Mbp bigger than we expect
- N50 = 1,623 bp
- Kraken2: 550 Mbp (73% of assembled genome) maps to contaminants (mostly molluscs); 63 Mbp is "unclassified"
- ~3000 contigs (~288,000 bp) map to different Haplosporidia (< 1% of assembled genome) contig

Conclusion & Next Steps

- Difficult to isolate *H. nelsoni* DNA from contaminants we knew this would be a challenge!
- Relative Cq values give an idea of the proportion of parasite DNA, but better understanding the relationship between detection estimates and sequencing output is needed
- Currently have a very partial assembly, with a small proportion of contigs that are potentially *H. nelsoni*
- Methods for enrichment of *H. nelsoni* cells prior to DNA extraction
- HiFi sequencing ideal for genome assemblies; depends on getting high molecular weight DNA

Acknowledgements

- Bérénice Bougas, IBIS, U Laval
- LabTech team, Onda
- Plateforme d'Analyse Génomique (PAG), IBIS, U Laval
- Plateforme de Bio-Informatique (PBI), IBIS, U Laval

Fisheries and Oceans Pêches et Océans Canada

Canada

